LLAMA2-13B SmoothQuant deployment guide¶
In this tutorial, you will use LMI container from DLC to SageMaker and run inference with it.
Please make sure the following permission granted before running the notebook:
- S3 bucket push access
- SageMaker access
Step 1: Let's bump up SageMaker and import stuff¶
%pip install sagemaker --upgrade --quiet
import boto3
import sagemaker
from sagemaker import Model, image_uris, serializers, deserializers
role = sagemaker.get_execution_role() # execution role for the endpoint
sess = sagemaker.session.Session() # sagemaker session for interacting with different AWS APIs
region = sess._region_name # region name of the current SageMaker Studio environment
account_id = sess.account_id() # account_id of the current SageMaker Studio environment
Step 2: Start preparing model artifacts¶
In LMI contianer, we expect some artifacts to help setting up the model - serving.properties (required): Defines the model server settings - model.py (optional): A python file to define the core inference logic - requirements.txt (optional): Any additional pip wheel need to install
%%writefile serving.properties
engine=DeepSpeed
option.model_id=TheBloke/Llama-2-13B-fp16
option.tensor_parallel_degree=1
option.dtype=fp16
option.quantize=smoothquant
batch_size=32
max_batch_delay=100
%%sh
mkdir mymodel
mv serving.properties mymodel/
tar czvf mymodel.tar.gz mymodel/
rm -rf mymodel
Step 3: Start building SageMaker endpoint¶
In this step, we will build SageMaker endpoint from scratch
Getting the container image URI¶
image_uri = image_uris.retrieve(
framework="djl-deepspeed",
region=sess.boto_session.region_name,
version="0.27.0"
)
Upload artifact on S3 and create SageMaker model¶
s3_code_prefix = "large-model-lmi/code"
bucket = sess.default_bucket() # bucket to house artifacts
code_artifact = sess.upload_data("mymodel.tar.gz", bucket, s3_code_prefix)
print(f"S3 Code or Model tar ball uploaded to --- > {code_artifact}")
model = Model(image_uri=image_uri, model_data=code_artifact, role=role)
4.2 Create SageMaker endpoint¶
You need to specify the instance to use and endpoint names
instance_type = "ml.g5.2xlarge"
endpoint_name = sagemaker.utils.name_from_base("lmi-model")
model.deploy(initial_instance_count=1,
instance_type=instance_type,
endpoint_name=endpoint_name,
# container_startup_health_check_timeout=3600
)
# our requests and responses will be in json format so we specify the serializer and the deserializer
predictor = sagemaker.Predictor(
endpoint_name=endpoint_name,
sagemaker_session=sess,
serializer=serializers.JSONSerializer(),
)
Step 5: Test and benchmark the inference¶
Firstly let's try to run with a wrong inputs
predictor.predict(
{"inputs": "Deep Learning is", "parameters": {"max_new_tokens":128, "do_sample":true}}
)
Clean up the environment¶
sess.delete_endpoint(endpoint_name)
sess.delete_endpoint_config(endpoint_name)
model.delete_model()